A SENSE PRESERVING SOBOLEV HOMEOMORPHISM WITH
NEGATIVE JACOBIAN ALMOST EVERYWHERE.
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In 2001 Hajlasz asked whether a Jacobian of a Sobolev homeomorphism in Wﬁ)’f,
1 < p < n—1 can change sign. That is, whether there is a homeomorphims such
that Jr > 0 on a set of positive measure and J; < 0 on a set of positive measure. In
[6] the authors answered this question for a range of integrability exponent. More

precisely

Theorem 1. Let Q C R™, n < 3, be a domain and let f € VVllocl (Q,R™) be a sense

preserving homeomorphism. Then J; > 0 a.e.

Theorem 2. Let Q) C R", n > 3, be a domain and let f : Q@ — R™ be a sense

preserving homeomorphism such that Df € L"/21 . Then J; >0 a.e.

where [z] stands for the greatest integer less or equal to z. We recall that
LIM2 c [In/21 s that Theorem 2 answers the question of Hajlasz for p > [n/2].
In [3] the authors gave a positive answer under some additional assumptions.
Indeed they provided an example of a homeomorphism f in WhHi((—1,1)" R")
such that Jy > 0 on a set of positive measure and Jy < 0 on a set of positive
measure. Moreover f maps null set into null set, that is, f satisfies the Lusin

condition. This example is generalized in [1]:

Theorem 3. Let Q2 CR™, n >4 and 1 < p < [n/2], then there is a homeomorphism
f e WhP((—=1,1)",R™) such that J; > 0 on a set of positive measure and Jy < 0

on a set of positive measure. Moreover f satisfies the Lusin condtion.

The examples constructed in [7] and [1] gave new ideas to answer another ques-
tion posed by Hajlasz (see [5]), that is:

It is possible to constructed a homeomorphism ¢ :— [0,1]" which is approx-
imately diffentiable a.e., has the Lusin property, euquals to the identity on the
boundary ( and hence it is sense preserving in the topological sense) but J, < 0

a.e. 7
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In [2] the authors focus to the previous question without assuming Sobolev reg-
ularity of the homeomorphism.

Following the main idea of [1] we would like to ansewer to the question of Hajtasz
constructing some homeomorphism in a Sobolev class. Our main result is the

following:

Theorem 4. There exists a Sobolev homeomorphism f € WHP((—1,1)%,(=1,1)%)
such that f(z) = x for every x € 9(—1,1)* but Jp(z) <0 for a.e. x € (—1,1)%.

This result is deeply connected with the problem of the approximation of Sobolev

homeomorphism, indeed:

Corollary 5. Set f~($1,5€2,1'3,174) = f(—w1,z2,23,24) where [ is from Theorem
4. Then Jf(ac) > 0 a.e. but there are no diffeomorphisms (or piecewise affine

homeomorphisms) fi such that fr — f in Whe,
The previous results are in collaboration with D. Campbell and S. Hencl.
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