A SENSE PRESERVING SOBOLEV HOMEOMORPHISM WITH NEGATIVE JACOBIAN ALMOST EVERYWHERE.

LUIGI D'ONOFRIO

In 2001 Hajłasz asked whether a Jacobian of a Sobolev homeomorphism in $W_{\text{loc}}^{1,p}$, $1 \leq p < n-1$ can change sign. That is, whether there is a homeomorphims such that $J_f > 0$ on a set of positive measure and $J_f < 0$ on a set of positive measure. In [6] the authors answered this question for a range of integrability exponent. More precisely

Theorem 1. Let $\Omega \subset \mathbb{R}^n$, $n \leq 3$, be a domain and let $f \in W^{1,1}_{loc}(\Omega, \mathbb{R}^n)$ be a sense preserving homeomorphism. Then $J_j \geq 0$ a.e.

Theorem 2. Let $\Omega \subset \mathbb{R}^n$, $n \geq 3$, be a domain and let $f : \Omega \to \mathbb{R}^n$ be a sense preserving homeomorphism such that $Df \in L^{[n/2],1}$. Then $J_j \geq 0$ a.e.

where [x] stands for the greatest integer less or equal to x. We recall that $L^{[n/2]} \subset L^{[n/2],1}$ so that Theorem 2 answers the question of Hajłasz for p > [n/2].

In [3] the authors gave a positive answer under some additional assumptions. Indeed they provided an example of a homeomorphism f in $W^{1,1}((-1,1)^n, \mathbb{R}^n)$ such that $J_f > 0$ on a set of positive measure and $J_f < 0$ on a set of positive measure. Moreover f maps null set into null set, that is, f satisfies the Lusin condition. This example is generalized in [1]:

Theorem 3. Let $\Omega \subset \mathbb{R}^n$, $n \ge 4$ and $1 \le p < [n/2]$, then there is a homeomorphism $f \in W^{1,p}((-1,1)^n, \mathbb{R}^n)$ such that $J_f > 0$ on a set of positive measure and $J_f < 0$ on a set of positive measure. Moreover f satisfies the Lusin condition.

The examples constructed in [7] and [1] gave new ideas to answer another question posed by Hajłasz (see [5]), that is:

It is possible to constructed a homeomorphism $\varphi :\to [0,1]^n$ which is approximately differitable a.e., has the Lusin property, euquals to the identity on the boundary (and hence it is sense preserving in the topological sense) but $J_{\varphi} < 0$ a.e. ? In [2] the authors focus to the previous question without assuming Sobolev regularity of the homeomorphism.

Following the main idea of [1] we would like to ansewer to the question of Hajłasz constructing some homeomorphism in a Sobolev class. Our main result is the following:

Theorem 4. There exists a Sobolev homeomorphism $f \in W^{1,p}((-1,1)^4, (-1,1)^4)$ such that f(x) = x for every $x \in \partial(-1,1)^4$ but $J_f(x) < 0$ for a.e. $x \in (-1,1)^4$.

This result is deeply connected with the problem of the approximation of Sobolev homeomorphism, indeed:

Corollary 5. Set $\tilde{f}(x_1, x_2, x_3, x_4) = f(-x_1, x_2, x_3, x_4)$ where f is from Theorem 4. Then $J_{\tilde{f}}(x) > 0$ a.e. but there are no diffeomorphisms (or piecewise affine homeomorphisms) f_k such that $f_k \to \tilde{f}$ in $W^{1,p}$.

The previous results are in collaboration with D. Campbell and S. Hencl.

References

- Campbell D., Hencl S. and TengvalL V. Approximation of W^{1,p} Sobolev homeomorphism by diffeomorphisms and the signs of the Jacobian Adv. Math. vol 331, 748–829, (2018).
- [2] Goldstein P. and Hajlasz P. A measure and orientation preserving homeomorphism of a cube with Jacobian equal -1 almost everywhere Arch. Ration. Mech. Anal. vol 225, 65–88, (2017).
- [3] Goldstein P. and Hajlasz P. Jacobians of $W^{1,p}$ homeomorphism, case $p = \lfloor n/2 \rfloor$ preprint 2018.
- [4] Goldstein P. and Hajlasz P. Modulus of continuity of orientation preserving approximately differentiable homeomorphisms with a.e. negative Jacobian preprint 2018
- [5] Hencl S. and Koskela P. Lectures on mappings of finite distortion Lecture Notes in Mathematics 2096, (2014).
- [6] Hencl S. and Malý J. Jacobians of Sobolev homeomorphisms Calc. Var., vol 38, 233–242, (2010).
- [7] Hencl S. and Vejnar B. Sobolev homeomorphisms that cannot be approximated by diffeomorphisms in W^{1,1} Arch. Rational Mech. Anal., vol 219, 183–202, (2016).

UNIVERSITÀ DEGLI STUDI DI NAPOLI "PARTHENOPE", VIA PARISI 13, 80100 NAPOLI, ITALY *Email address*: donofrio@uniparthenope.it

 $\mathbf{2}$