The asymptotic mean value property for p-harmonic functions in the plane

José G. Llorente

Classical results going back to Blaschke, Privalov and Zaremba say that if u is continuous in a domain $\Omega \subset \mathbb{R}^{n}$ and satisfies the asymptotic mean value property

$$
u(x)=f_{B(x, r)} u(y) d y+o\left(r^{2}\right)
$$

at each $x \in \Omega$ then u is harmonic in Ω. (The error term actually vanishes a posteriori by Gauss theorem). If $1<p<\infty$, the following (nonlinear) asymptotic mean value property

$$
\begin{equation*}
u(x)=\frac{p-2}{p+n} \cdot \frac{1}{2}\left(\sup _{B(x, r)} u+\inf _{B(x, r)} u\right)+\frac{2+n}{p+n} f_{B(x, r)} u(y) d y+o\left(r^{2}\right) \tag{*}
\end{equation*}
$$

is closely related to the p-laplacian. Manfredi, Parviainen and Rossi used the viscosity characterization of the p-laplacian and proved that continuous functions satisfying $(*)$ are p-harmonic. The converse, however, remains open for $n \geq 3$. More information is available when $n=2$, due basically to the fact that the complex gradient of a p-harmonic function is a quasiregular mapping. Lindqvist and Manfredi used the hodographic method to show that p-harmonic functions in the plane satisfy ($*$) with $n=2$ and $1<p<$ $p_{0}=9.52 \ldots$. In the talk we will report joint work with A. Arroyo where we refine the method of Lindqvist and Manfredi and show that the same result holds in the whole range $1<p<\infty$.
J.G. Llorente, Departament de Matemàtiques, Universitat Autònoma de Barcelona. 08193, Bellaterra, Barcelona. Spain.

E-mail address: jgllorente@mat.uab.cat

